Joseph DAVIDOVITS

GEOPOLYMER Chemistry & Applications

5th edition

Geopolymer Chemistry and Applications 5^{th} edition

Joseph DAVIDOVITS

©2008, 2011, 2015, 2020 Joseph DAVIDOVITS

ISBN: 9782954453118

 5^{th} edition, March 2020.

Published by:

Institut Géopolymère 16 rue Galilée F-02100 Saint-Quentin France Web: www.geopolymer.org

Written and edited by:

Joseph DAVIDOVITS Web: www.davidovits.info

All Rights Reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any other information storage and retrieval system, without prior permission in writing from the publisher.

Tous Droits Réservés. Aucune partie de cette publication ne peut être reproduite sous aucune forme ou par aucun moyen, électronique ou mécanique, incluant la photocopie, l'enregistrement ou par système de stockage d'informations ou de sauvegarde, sans la permission écrite préalable de l'éditeur.

About the author

Professor Joseph Davidovits.

Professor Joseph Davidovits is famous for his pioneering work on geopolymers. He is an internationally renowned French materials scientist and archeologist, who was honored by French president Jacques Chirac with one of France's two highest awards, the Chevalier de l'Ordre National du Mérite, in November 1998. Born in 1935, he has a French Degree in chemical engineering and a German Doctorate Degree (PhD) in chemistry, was professor and founder of the Institute for Applied Archaeological Sciences at Barry university, Miami, Florida (1983-1989), Visiting professor at Penn State university, Pennsylvania (1989-1991) and Director of the Geopolymer Institute, Saint-Quentin, France (1979-present). He is a world expert in lowtemperature geosynthesis as well as in archaeological science. He is the inventor in 1979 of geopolymers and the chemistry of geopolymerization. He has authored/co-authored hundreds scientific papers, reports, and dozen of books, holds more than 50 patents and has written in 2008 the reference book Geopolymer Chemistry and Ap*plications*, 5^{th} edition issued in 2020. Since 2009, he is the Chairman of the annual international gathering: Geopolymer Camp.

Contents

Ι	Pol	ymers and Geopolymers	1
1	\mathbf{Intr}	oduction	3
	1.1	Historical background	6
		1.1.1 The invention of the first mineral resin, October 1975	8
	1.2	The scope of the book	12
	1.3	Early observations	13
	1.4	Phosphate-based geopolymer	15
		1.4.1 Phosphate geopolymers	16
		1.4.2 High-molecular phosphate-based geopolymers: cristo-	
		balitic $AIPO_4$	17
	1.5	Organo-mineral geopolymers	17
		1.5.1 Silicone	17
		1.5.2 Hybrid organo-mineral geopolymers	18
		1.5.3 Humic-acid based: kerogen geopolymer	18
2	The	mineral polymer concept: silicones and geopolymers	23
	2.1	The polymeric character of silicones	24
	2.2	The dispute over ionic or covalent bonding in silicates	25
	2.3	Covalent bonding in alumino-silicates / silico-aluminates	30
	2.4	Tetra-coordinated Al or tetra-valent Al?	31
	2.5	Terminology	32
		2.5.1 $Poly(siloxo) / poly(siloxonate) / poly(silanol)$	32
		2.5.2 $Poly(sialate) \ldots \ldots$	32
		2.5.3 $Poly(ferro-sialate) \dots \dots$	37
	2.6	Polymeric character of geopolymers: geopolymeric micelle	37
3	Mac	cromolecular structure of natural silicates and alumino-	
	silic	ates	41
	3.1	Silicate ionic and covalent structural representations	42
	3.2	Ortho-silicate, $1[SiO_4]$, ortho-siloxonate, Zircon $ZrSiO_4$	44
	3.3	Di-silicate, di-siloxonate, Epidote	44
	3.4	Tri-silicate, tri-siloxonate, ring silicate, Benitoite	45
	3.5	Tetra-silicate, $4[SiO_4]$, ring silicate $[Si_4O_{12}]$	45
	3.6	Hexa-silicate, hexa-siloxonate, ring silicate, Beryl	46
	3.7	Linear poly-silicate, poly(siloxonate), chain silicate, Pyroxene,	
		Wollastonite	46

3.8	Branched poly-silicate, poly(siloxonate), ribbon structure, Am-
	phibole $[Si_4O_{11}]_n$
3.9	Sheet silicate, $[Si_2O_5]_n$, 2D-poly(siloxo), composite sheet 50
	3.9.1 Kaolinite, poly(siloxo-aluminumhydroxyl) 50
	3.9.2 Pyrophillite $Al_4(OH)_4[Si_8O_{20}]$, poly(siloxo-intra-sialate) 51
	3.9.3 Muscovite $K_2Al_4[Si_6Al_2O_{20}](OH)_4$, poly(siloxo-intra-sialate) 52
3.10	Other sheet silicates, Melilite, Gehlenite, Akermanite, pentago-
	nal arrangement. $\ldots \ldots 52$
3.11	Framework silicate, Quartz, Tridymite, $SiO_2 \ldots \ldots \ldots \ldots 54$
	3.11.1 Structure of Quartz $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 54$
	3.11.2 Structure of Tridymite
3.12	Framework silicate, Nepheline $Na[AlSiO_4]$ and Kalsilite $K[AlSiO_4]$ 55
3.13	Framework silicate, Leucite $K[AlSi_2O_6]$
3.14	Framework silicate, Feldspar double-crankshaft chain $[(Si,Al)_4O_8]_n$ 57
	3.14.1 Anorthite $Ca[Al_2Si_2O_8]$
	3.14.2 Sanidine $K[AlSi_3O_8]$
3.15	Framework silicate, Feldspathoid, Sodalite $Na[AlSiO_4]$ 58
3.16	Framework silicate, zeolite group

II The synthesis of alumino-silicate mineral geopolymers 63

4 Scientific Tools, X-rays, FTIR, NMR 654.1X-ray diffraction 65FTIR, infra-red spectroscopy 4.268 4.3724.3.1724.3.275Poly(siloxonate) and polysilicate, soluble silicate, Si:Al=1:0 81 5 5.181 5.283 5.3Manufacture of soluble (Na,K)-poly(siloxonate), soluble silicates 84 5.3.1Chemical mechanism 84 5.3.286 5.3.389 5.3.489 5.4Structure of solid poly(siloxonate), (Na,K)-silicate glasses 89 5.4.1Molecular structure of poly(siloxonate), alkali silicate 915.4.2Molecular structure of poly(siloxonate), alkali-tridymite 935.5Poly(siloxonate) in solution. Hydrolysis, depolymerization of solid silicates 99 Structure of poly(siloxonate) solutions, soluble alkali silicates . . 100 5.65.6.15.6.2NMR spectroscopy: identification of soluble species . . . 101

		5.6.3	Hydrolysis of poly(siloxonate) alkali-glass into water sol-
			uble molecules $\ldots \ldots 103$
		5.6.4	Hydrolysis of silica fume into water soluble molecules $\ . \ . \ 107$
	5.7	Density	, specific gravity $\ldots \ldots \ldots$
	5.8	Viscosit	y
	5.9	pH valu	e and stability of alkali silicate solutions
	5.10	Powder	ed poly(siloxonates), soluble hydrous alkali silicate powders110
	5.11	Poly(sil	oxonate) MR=1, Na-metasilicate $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 112$
	5.12	Replace	ement of poly(siloxonate) solution with powdered equiva-
		lent pro	duct.
6	(Na,	K)–olig	o-sialates: hydrous alumino-silicate gels and zeolites117
	6.1	Zeolite	Synthesis $\ldots \ldots 117$
	6.2	Hypoth	etical or real oligo-sialates: polymerization mechanism
		into pol	y(sialate)
	6.3	Exampl	es of poly(sialate-multisiloxo) gels
		6.3.1	Poly(sialate-disiloxo) gel
		6.3.2	Poly(siloxonate-intra-sialate) gels
7	Kaol	inite / I	Hydrosodalite based geopolymer, poly(sialate) with
	Si:A	l=1:1	131
	7.1	Geopoly	ymerization mechanism of kaolinite under ionic concept 132
	7.2	Ultra ra	apid in situ geopolymerization of kaolinite in hydrosodalite 136
	7.3	Geopoly	merization mechanism of kaolinite under covalent bond-
		ing con	cept
	7.4	Hydrose	odalite Na–poly(sialate) and Zeolite A formation with cal-
		cined ka	aolin
8	Meta	akaolin	MK-750 based geopolymer, poly(sialate-siloxo) with
	Si:A	l=2:1	151
	8.1	(Na,K)-	-poly(sialate-siloxo)
	8.2	Alumin	o-silicate oxide: dehydroxylated kaolinite, MK-750 158
		8.2.1	Characteristic of kaolinite and dehydroxylated kaolinite . 160
		8.2.2	IV-fold coordination of Al in dehydroxylated kaolinite,
			earlier studies. \ldots
		8.2.3	MAS-NMR spectroscopy of dehydroxylated kaolinite $$. 162
		8.2.4	Dehydroxylation mechanism of kaolinite
		8.2.5	Reactivity of MK-750, geopolymerization into (Na,K)–
		8 9 <i>C</i>	$poly(shale-shoxo) \dots \dots$
		8.2.0 8.2.7	Coordination into fully condensed relations into fully condensed relations into fully condensed relations.
		8.2.1	Geopolymerization into fully condensed poly(statate-shoxo)
		000	requires $AI(v) + AI(1v) + AI(vI)$ species
		0.2.0	MP ratio 170
		820	Coopolymerization of poly(siglate silove) function of our
		0.4.9	ing temperature 100
	83	Chemic	al mechanism: formation of ortho-siglate $(OH)_{2}$ Si O Al
	0.0	$(OH)_{a}$	181
		831	Chemical mechanism with $Al(V) - Al - O$ alumovyl 181
		0.0.1	= 101 - 0 artifloxy i.e. 101

		8.3.2	Chemical mechanism in Al-O-Al-OH geopolymerization . 182
	8.4	Kinetic	s of chemical attack
	8.5	Chemic	cal mechanism for Na-based sialate: Si:Al=1, Si:Al=2 and
		Si:Al=3	3
		8.5.1	Phase 1: outer faces/edges reaction; Albite framework
			with Q_1 di-siloxonate, Si:Al=3, Na-poly(sialate-disiloxo) 186
		8.5.2	Phase 2: inner particulate reaction; Nepheline frame-
			work Si:Al=1, Na–poly(sialate)
		8.5.3	Phillipsite framework with Q ₀ siloxonate, Si:Al=2, Na–
			poly(sialate-siloxo)
		8.5.4	To sum up
	8.6	Chemic	cal mechanism for K-based sialate: Si:Al=1, Si:Al=2 \dots 190
		8.6.1	Kalsilite framework, Si:Al=1, K–poly(sialate) 193
		8.6.2	Leucite framework with Q_0 siloxonate, Si:Al=2, K-poly(sialate-
			siloxo) $\ldots \ldots 195$
	8.7	Simplif	ied structural model for (Na,K)–based geopolymers 197
	8.8	Al-O-A	l bond formation in geopolymers
	8.9	Synthes	sis of MK-750 type molecules
9	Calc	ium ba	sed geopolymer, (Ca, K, Na)–sialate, Si:Al=1, 2, 3 209
	9.1	Ca-pol	y(alumino-sialate), gehlenite hydrate $Ca_2Al_2SiO_7$, H_2O . 209
		9.1.1	Opus Signinum
		9.1.2	Ca–poly(alumino-sialate), gehlenite synthesis with MK-
			750
	9.2	(Ca)-p	$oly(alumino-sialate) + (Na,K)-poly(sialate) \dots 213$
	9.3	Ca-pol	y(alumino-sialate), gehlenite based blast furnace slag 215
		9.3.1	The manufacture of iron blast furnace slag glass 216
	0 (9.3.2	Chemical and mineral composition of gehlenite based slag.217
	9.4	Alkalın	ation of Ca–poly(alumino-sialate) glassy slag with NaOH
		and K($\mathcal{OH} \qquad \qquad$
		9.4.1	Alkalination mechanism study with MAS-NMR spec-
		0.4.0	
	0.5	9.4.2	Alkall-Activated slag
	9.5	MK-75	V / stag based geopolymer
		9.0.1	4 500 085 1085 flad Edward 22 1084
		052	4,509,985, 1985, filed February 22, 1984 \ldots 224 Which chemical reaction for MK 750 / alor based reac
		9.0.2	which chemical reaction for MK-750 / Siag-based geo-
		052	Formation of soluble calcium disilicate?
	0.6	9.0.0 Chomic	rormation of soluble calcium disincate:
	9.0	motriv	stry mechanism of MIX-750 / stag Ca-based geopolymer
		0.6.1	MAS NMR Spectrogram 230
		9.0.1	Floctron microscopy
		9.0.⊿ 0.6.3	Chemistry mechanism solid solution in Ca based goo
		3.0.0	nolvmer matrix 944
		964	Structural molecular model for Ca-based geopolymor
		5.0.4	matrix 946
			maana

10 Rock-based geopolymer, poly(sialate-multisiloxo) 1<Si:Al<5 253

 10.1.1 Congruent dissolution and ionic bonding concept . 10.1.2 Incongruent dissolution and covalent bonding concept 10.2 (Na,K)-poly(sialate) matrix for rock based geopolymerization 10.3 (K,Ca)-poly(sialate-multisiloxo) matrix for rock-based geopolymers. 11 Ferro-sialate geopolymers, (-Fe-O-Si-O-Al-O-) 11.1 A 1400 years old technique in Pre-Columbian South-America 11.2 Ferro-sialate geopolymer binder	2 pt 2 n 2 oly- 2 2 2	55 55 58 62 71
 10.1.2 Incongruent dissolution and covalent bonding conception (Na,K)-poly(sialate) matrix for rock based geopolymerization (K,Ca)-poly(sialate-multisiloxo) matrix for rock-based geopolymers. 11 Ferro-sialate geopolymers, (-Fe-O-Si-O-Al-O-) 11.1 A 1400 years old technique in Pre-Columbian South-America 11.2 Ferro-sialate geopolymer binder	ot 2 n 2 oly- 2 2 2	55 58 62 71
 10.2 (Na,K)-poly(sialate) matrix for rock based geopolymerizatio 10.3 (K,Ca)-poly(sialate-multisiloxo) matrix for rock-based geopolymers. 11 Ferro-sialate geopolymers, (-Fe-O-Si-O-Al-O-) 11.1 A 1400 years old technique in Pre-Columbian South-America 11.2 Ferro-sialate geopolymer binder	$\begin{array}{c} n . 2 \\ ply- \\ \cdot . 2 \\ \\ 2 \\ \cdot . 2 \\ \end{array}$	58 62 71
 10.3 (K,Ca)-poly(stalate-multisiloxo) matrix for rock-based geopolymers. 11 Ferro-sialate geopolymers, (-Fe-O-Si-O-Al-O-) 11.1 A 1400 years old technique in Pre-Columbian South-America 11.2 Ferro-stalate geopolymer binder	$\begin{array}{c} \text{oly-}\\ \cdot & \cdot & 2\\ & & 2\\ \cdot & \cdot & 2\\ \cdot & \cdot & 2\\ \end{array}$	6271
 mers	$\dots 2$	62 71
 11 Ferro-sialate geopolymers, (-Fe-O-Si-O-Al-O-) 11.1 A 1400 years old technique in Pre-Columbian South-America 11.2 Ferro-sialate geopolymer binder	2 • • • 2	71
 11.1 A 1400 years old technique in Pre-Columbian South-America 11.2 Ferro-sialate geopolymer binder	1.2 1	
11.2Ferro-sialate geopolymer binder \ldots 11.3Controversial role of iron in geopolymerization \ldots 11.4Ferro-kaolinite: substitution of Al^{3+} with Fe^{3+} \ldots 11.5Analytical method: Mössbauer spectroscopy	ົ	72
 11.3 Controversial role of iron in geopolymerization	$\cdot \cdot \cdot Z$	74
11.4 Ferro-kaolinite: substitution of Al^{3+} with Fe^{3+}	2	83
11.5 Analytical method: Mössbauer spectroscopy	2	84
11.5 Amary field method. Mossbauer spectroscopy	2	85
12 Silica-based geopolymer, sialate and siloxo link in poly(silox	onate)
Si:Al>5	2	91
12.1 A 5000 year-old technique $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	2	91
12.2 Silica Flour	2	95
12.3 Nano-silica, micro-silica, silica fume $SiO_2 \ldots \ldots \ldots \ldots$	2	95
12.3.1 Fume silica SiO_2	2	96
12.3.2 Silica Fume / Microsilica $\ldots \ldots \ldots \ldots \ldots \ldots$	2	96
12.4 Rice Husk Ash	2	98
12.5 Applications of SiO_2 nano-particles and rice husk ash	2	99
12.6 Poly(siloxo) and poly(sialate) cross-links, nanocomposite geo	po-	
lymer	3	00
12.6.1 Nano-poly(siloxo) geopolymer $\ldots \ldots \ldots \ldots$	3	01
12.6.2 ²⁹ Si MAS-NMR studies on the transition nano-poly(s	ilanol)	
to nano-poly(siloxo) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	3	03
12.6.3 ¹ H MAS-NMR studies	3	04
12.6.4 K–nano–poly(sialate) geopolymer composite \ldots	3	07
12.7 Possible health hazards of SiO_2 nanoparticles	3	08
13 Fly ash-based geopolymer	3	11
13.1 Production of fly ashes	3	12
13.1.1 Types of fly ash, composition	3	13
13.1.2 Morphology \ldots \ldots \ldots \ldots \ldots \ldots	3	15
13.2 Alkalination, dissolution and zeolite formation	3	16
13.3 Fly ash cement in high alkaline milieu (corrosive system)	3	17
13.3.1 First production of fly ash-based cement	3	17
13.3.2 Fly ash cement without soluble silicate?	3	20
13.3.3 Fly ash geopolymerization with addition of soluble sil	icate.3	22
13.4 Geopolymerization in low alkaline milieu (user-friendly)	3	24
13.4.1 NMR spectroscopy	3	25
13.5 The GEOASH research project	3	27
13.5.1 Alkali-activation and geopolymerization	3	29
13.5.2 Compressive strength	3	31
13.5.3 Reaction mechanism	3	34
13.5.4 Leaching properties		

		13.5.5	(Ca,K)-based geopolymer matrix: composition and struc-
	13.6	The fut	ure with gasifier slag technology
14	Phos	phate-b	based geopolymers 343
	14.1	A 4500	year-old Egyptian technology!
	14.2	Brief su	rvey of phosphate chemistry
		14.2.1	Ortho-, di-, tri- and poly-phosphoric acid
		14.2.2	Polyphosphate linear chains
	14.3	Low-mo	lecular phosphate-based geopolymers
	14.4	Poly(sia	$late-siloxo) / phosphate composites \ldots \ldots \ldots \ldots 350$
	14.5	Phospho	o-siloxonate geopolymer, -Si-O-P-O-Si
		14.5.1	Ca-phospho-silicate
	14.6	$AlPO_4$ -	based geopolymers
		14.6.1	Polymeric structures of AlPO ₄ -geopolymers: 27 Al and 31 P NMR
		14.6.2	Synthesis of AlPO ₄ -geopolymers: the solution and sol-
		14.6.3	Synthesis of AlPO ₄ -geopolymers: the modified Al_2O_3
			routes
		14.6.4	MK-750 metakaolin-based AlPO ₄ -geopolymer $\ldots \ldots 361$
15	Orga	nic-min	eral geopolymer 369
	15.1	Poly-org	gano-siloxanes / silicones
		15.1.1	Geopolymeric identity
		15.1.2	Two polymerization mechanisms: acidic and basic 370 $$
		15.1.3	Depolymerization and cleavage
		15.1.4	Properties of technical silicones
	15.2	Keroger	$a-geopolymer \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	15.3	Organo-	geopolymer compounds
		15.3.1	Inclusion of hydrophilic polymers, poly(ethylene glycol) . 377
		15.3.2	Reaction with isocyanate R-N=C=O $\ldots \ldots \ldots 379$
		15.3.3	Reaction with poly(acrylic acid) $R-C(=O)-OH \dots 380$
		15.3.4	Reaction with aqueous phenolic resin and poly(styrene butadiene) latex
		15.3.5	Reaction with hydrophobic polymers: epoxy, phenolic, silicone

III Properties

385

Phys	ical pro	perties of condensed geopolymers	387
16.1	Density	and softening temperature	387
16.2	Therma	l behavior, shrinkage on dehydroxylation	388
	16.2.1	DTA-TGA and Shrinkage on dehydration and dehydrox-	
		ylation	388
	16.2.2	Yield of the conversion of kaolinite into Na–poly(sialate)	
		Na-PS	391
	Phys 16.1 16.2	Physical pro 16.1 Density 16.2 Therma 16.2.1 16.2.2	Physical properties of condensed geopolymers 16.1 Density and softening temperature 16.2 Thermal behavior, shrinkage on dehydroxylation 16.2.1 DTA-TGA and Shrinkage on dehydration and dehydroxylation ylation

	16.3	Therma	l Expansion C.T.E.	. 393
		16.3.1	C.T.E. Coefficient of Thermal Expansion	. 393
		16.3.2	Mean linear thermal expansion, the major role of ce-	
			ramic fillers	. 394
	16.4	Water a	nd moisture absorption	. 396
	16.5	Electrica	al values: resistivity and dielectric properties	. 397
	16.6	Adhesio	n	. 399
		16.6.1	Adhesion on natural stone; geopolymer with $Si:Al=2$.	. 400
		16.6.2	Adhesion on steel, aluminum and glass, Geopolymer	
			with Si:Al=2	. 400
		16.6.3	Adhesion on metal, Geopolymer with Si:Al>20	. 402
	16.7	Practica	l physical properties	. 403
17	Cher	nical Pr	operties of condensed geopolymers	407
	17.1	Acid res	istance	. 409
		17.1.1	Influence of acid on incompletely condensed Na-poly(siala	ate-
			siloxo)	. 410
		17.1.2	Acid resistance of geopolymer cement towards sulfuric	
			acid	. 412
		17.1.3	Sulfate resistance of geopolymer cement	. 415
	17.2	Alkali-ag	ggregate reaction	. 415
	17.3	Corrosic	on of metal bars	. 417
	17.4	Practica	l chemical properties	. 417
		17.4.1	pH values	. 417
		17 4 9	(K Ca)-poly(siglate sileve) and (K Ca)-poly(siglate disil	ava)
		11.4.2	$(\mathbf{R}, \mathbf{C}a)$ -poly (statate-shoxo) and $(\mathbf{R}, \mathbf{C}a)$ -poly (statate-dist	UXU)
		11.4.2	cements: \ldots	. 418
		1(.4.2	cements: $\dots \dots \dots$. 418
18	Long	17.4.2	cements:	. 418
18	Long	g-term d	urability, archaeological analogues, geological ana-	421 (000)
18	Long logue 18.1	:-term d :es The old	cements:	421
18	Long logue 18.1	5-term d es The olde from Do	cements:	421 . 422
18	Long logue 18.1 18.2	-term d es The olde from Do Chemica	cements:	421 . 422 . 423
18	Long logue 18.1 18.2 18.3	The older from Do Chemica Egyptian	cements:	421 . 422 . 423
18	Long logue 18.1 18.2 18.3	The older from Do Chemica 2700 B.0	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus olní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C.	421 . 422 . 423 . 424
18	Long logue 18.1 18.2 18.3	The older from Do Chemica 2700 B.0 18.3.1	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus lní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks	421 . 422 . 423 . 424 . 427
18	Long logue 18.1 18.2 18.3	The older from Do Chemica Egyptia 2700 B.0 18.3.1 18.3.2	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus blní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones	421 . 422 . 422 . 423 . 424 . 427 . 428
18	Long logue 18.1 18.2 18.3	The old from Do Chemica Egyptia 2700 B.0 18.3.1 18.3.2 18.3.3	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus lní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyra-	421 . 422 . 423 . 424 . 424 . 427 . 428
18	Long logue 18.1 18.2 18.3	5-term d 5-term d 5- The older from Do Chemica Egyptian 2700 B.0 18.3.1 18.3.2 18.3.3	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus lní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyramid stones	421 . 422 . 422 . 423 . 424 . 427 . 428 . 429
18	Long logue 18.1 18.2 18.3	The olde from Do Chemica Egyptia 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus olní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyra- mid stones mid stones	421 . 422 . 423 . 424 . 424 . 427 . 428 . 429 . 430
18	Long logue 18.1 18.2 18.3	The old from Do Chemica Egyptia 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus lní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks The experimentation: manufacturing 14 tonnes of pyra- mid stones mid stones n Pyramid stone hand concretes	421 . 422 . 423 . 424 . 427 . 428 . 429 . 430 . 431
18	Long logue 18.1 18.2 18.3	5-term d 5-term d 5- The older from Do Chemica Egyptian 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1 18.4.2	(R,Ca) - poly(shalace-shoxo) and (R,Ca) - poly(shalace-dish cements:	418 421 . 422 . 423 . 424 . 427 . 428 . 429 . 430 . 431
18	Long logue 18.1 18.2 18.3	-term d -term d from Do Chemica Egyptian 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1 18.4.2	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus blní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyra- mid stones Roman cements and concretes The first high-performance Roman cement, with Opus Signinum.	421 421 422 423 423 423 424 427 428 429 430 431 432
18	Long logue 18.1 18.2 18.3	5-term d 5-term d 5- The older from Do Chemica Egyptian 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1 18.4.2 18.4.3	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus ohn Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyra- mid stones Roman cements and concretes The first high-performance Roman cement, with Opus Signinum. Signinum.	421 . 422 . 423 . 424 . 427 . 428 . 429 . 430 . 431 . 432
18	Long logue 18.1 18.2 18.3	5-term d 5-term d 5- The older from Do Chemica Egyptia: 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1 18.4.2 18.4.3	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus lní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks The experimentation: manufacturing 14 tonnes of pyra- mid stones mid stones The experimentation: manufacturing 14 tonnes of pyra- mid stones The first high-performance Roman cement, with Opus Signinum. The second high-performance Roman cement, with Car-	421 . 422 . 423 . 424 . 427 . 428 . 429 . 429 . 430 . 431 . 432 . 433
18	Long logue 18.1 18.2 18.3	term d g-term d from Do Chemica Egyptian 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1 18.4.2 18.4.3 18.4.4	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus ohn Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks The experimentation: manufacturing 14 tonnes of pyra- mid stones Roman cements and concretes Chemistry high-performance Roman cement, with Opus Signinum. The second high-performance Roman cement, with Carbunculus. Comparison between Roman and modern geopolymer	421 421 422 423 423 424 427 428 427 428 429 430 431 432 433
18	Long logue 18.1 18.2 18.3	5-term d 5-term d 5-term d From Do Chemica Egyptia: 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1 18.4.2 18.4.3 18.4.4	urability, archaeological analogues, geological analest est geopolymer artifact: 25,000 year-old ceramic Venus lní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyra- mid stones Roman cements and concretes Chemistry of high-performance Roman cement, with Opus Signinum Signinum Cements And concretes Cements and concretes Cements and concretes Cements and concretes Cements and concretes Cements and concretes Cements and concretes Cements and concretes Cements and concretes Cements and concretes Cements Ceme	421 421 422 423 423 424 427 428 429 429 430 431 432 433 433
18	Long logue 18.1 18.2 18.3 18.4	-term d -term d from Do Chemica Egyptian 2700 B.0 18.3.1 18.3.2 18.3.3 Ancient 18.4.1 18.4.2 18.4.3 18.4.4 Ferro-sia	urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus lní Věstonice als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyra- mid stones Roman cements and concretes Chemistry high-performance Roman cement, with Opus Signinum The second high-performance Roman cement, with Car- Unculus Comparison between Roman and modern geopolymer cements alate geopolymer sandstone concrete found in pre-Columbi	421 . 422 . 423 . 424 . 427 . 428 . 429 . 429 . 430 . 431 . 432 . 433 an
18	Long logue 18.1 18.2 18.3 18.4		(IX, Ca) poly(shalateshoxo) and (IX, Ca) poly(shalateshoxo) and (IX, Ca) poly(shalateshoxo) and (IX, Ca) poly(shalateshoxo) and cements: urability, archaeological analogues, geological ana- est geopolymer artifact: 25,000 year-old ceramic Venus ohn Věstonice als extracted from plant ashes als extracted from plant ashes n Pyramid stone, re-agglomerated limestone concrete, C. Chemistry of the core blocks Chemistry of the casing stones The experimentation: manufacturing 14 tonnes of pyra- mid stones Roman cements and concretes Cements and concretes The first high-performance Roman cement, with Opus Signinum. The second high-performance Roman cement, with Car- Comparison between Roman and modern geopolymer cements alate geopolymer sandstone concrete found in pre-Columbi ents at Pumapunku / Tiwanaku, Bolivia.	421 421 422 423 423 423 423 423 427 428 427 428 429 430 431 431 432 433 an 433

IVApplications

19	Qual	lity control 4				
	19.1	Raw-materials				
		19.1.1 Solid elemental composition	449			
		19.1.2 pH determination of the raw-materials	451			
		19.1.3 Granulometry	453			
	19.2	Determination of the geopolymeric reactivity	454			
	19.3	Fluidity and Viscosity of metakaolins MK-750 in K-Silicate so-				
		lution.	456			
	19.4	Reactivity and Exothermicity of metakaolins MK-750: standard-				
		ized method. \ldots	457			
		19.4.1 Exothermic reactivity in isothermal conditions	458			
		19.4.2 Exothermic reactivity: Cumulative exothermal heat flow				
		in non-isothermal conditions.	459			
	19.5	Working time (pot-life), resin and paste	462			
		19.5.1 Working time (pot-life) \ldots \ldots \ldots \ldots \ldots	463			
		19.5.2 Role of additional water $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	464			
		19.5.3 Control on the hardening paste: penetrometer	465			
		19.5.4 Plasticizers and retarders	466			
	19.6	Compressive strength and tensile strength	467			
		19.6.1 Compressive strength	467			
		19.6.2 Tensile strength \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	470			
	19.7	Additional fast testing on hardened geopolymers	470			
		19.7.1 Boiling water / steam	470			
		19.7.2 Freeze-Thaw / Wet-Dry	471			
		19.7.3 Thermal behavior, expansion at 250°C, thermal dilatom-				
		etry	472			
• •	Б					
20	Deve	elopment of user-friendly systems	475			
	20.1	Definitions	475			
	20.2	The need for user-friendly systems	476			
	20.3	The position of civil engineers	478			
	20.4	The pH values of geopolymers	480			
	20.5	K^+ versus Na^+	481			
21	How	to quantify and develop geopolymer formulas	485			
	21.1	Detailed knowledge of the raw material composition and structure	e486			
	21.1	21.1.1 (K Na)-silicate solutions	487			
		21.1.1 (R,Rd) sincare solutions	489			
	21.2	How to calculate a formula	490			
	21.2	21.2.1 Mathematical equation for calculating the molar ratio	100			
		Na $K \cdot A = 1$	491			
		21.2.2 Three geopolymer formulas	492			
	21.3	The strict implementation of a process method for optimal results	s 405			
	<u>41.0</u>	21.3.1 Respecting the mixing order	496			
		21.3.2 Always make the binder first	497			
		21.3.3 Finding the right filler	498			
		21.3.4 Curing and hardening	499			

		21.3.5	Final chemical testing	. 500
22	Casta	able geo	polymer, industrial and decorative applications	501
	22.1	The 500	0 year-old Egyptian stone vases	. 501
	22.2	K-poly(sialate-siloxo) for castable artifacts.	. 505
	22.3	Tooling	materials and techniques	. 510
		22.3.1	Advanced geopolymer tooling	. 510
		22.3.2	Instruction for use	. 511
	22.4	Modern	geopolymer stone artifacts	. 513
	22.5	Decorat	ive stone tiles for floor and wall	. 515
	22.6	Restora	tion of ceramic works of art	. 516
23	Geor	olvmer	– fiber composites	519
	23.1	Fundam	ental remarks on heat and fire resistance	. 520
		23.1.1	Heat resistance applications in racing cars	. 521
		23.1.2	Review of carbon/geopolymer and other ceramic-ceramic	
			composites	. 522
	23.2	The dev	velopment of high performance geopolymer matrices	. 524
		23.2.1	K-poly(sialate) K-PS/K-PSS matrix	. 525
		23.2.2	Improvement of the matrices: K–PSDS, F.M-PSDS and	
			K-nano- PSS	. 527
		23.2.3	Improvement with high-temperature post-treatment of	
			the matrices K–PS / K–PSS	. 529
	23.3	Principl	es in geopolymer-composite manufacture	. 530
		23.3.1	Hand lay-up	. 531
		23.3.2	Vacuum bagging	. 531
		23.3.3	Filament winding	. 532
		23.3.4	Resin Transfer Molding, RTM (injection molding)	. 532
		23.3.5	Infusion (infiltration) process	. 532
		23.3.6	Autoclave curing	. 533
	23.4	Geopoly	vmer-composite tools fabrication	. 534
	23.5	Fire res	istance with K-nano-poly(sialate) laminates	. 535
		23.5.1	Fabrication of K-nano-poly(sialate) carbon composite	
			for fire-resistance testing	. 537
		23.5.2	Flammability of organic and geopolymer composites .	. 538
		23.5.3	Flashover temperature	. 539
		23.5.4	Residual strength after fire exposure	. 540
	23.6	Fatigue	loading of K–nano–poly(sialate) $/$ carbon composite	. 541
	23.7	K-nano	-poly(sialate) / carbon / E-glass composite	. 542
	23.8	Geopoly	vmer composite sandwiches for heat barrier	. 543
	23.9	Geopoly	vmer composite for strengthening concrete structures	. 544
	23.10	Geopoly	vmer composite for fire resistant structural elements	. 547
24	Foar	ned geor	polymer	553
-	24.1	Geopoly	$\frac{1}{2}$ where $\frac{1}{2}$ mer for \frac{1}{2} mer for $\frac{1}{2}$ mer for \frac{1}{2} mer for $\frac{1}{2}$ mer f	. 554
		24.1.1	Foaming with Na perborate	. 554
		24.1.2	Foaming with H_2O_2	. 555
		24.1.3	Insulating value of geopolymer foam	. 556
	24.2	High-ter	mperature insulation	. 557
		0		

	24.3	Passive	cooling of buildings in hot / arid climate $\ldots \ldots \ldots$. 558
	24.4	Passive	Cooling in big cities	. 560
25	Geor	polvme	rs in ceramic processing	563
	25.1	Low Te	emperature Geopolymeric Setting of ceramic, LTGS	. 563
		25.1.1	Geopolymeric setting at room temperature below 65°C	. 564
		25.1.2	Geopolymeric setting at temperatures ranging between	
			80°C and 450°C	. 566
		25.1.3	Resistance to water	. 566
	25.2	Archae	ological ceramics	. 566
	-0	25.2.1	Evidence of LTGS in ancient ceramics	567
		25.2.1	The making of Etruscan Ceramic (Bucchero Nero) in	
		20.2.2	600–700 B C	569
		25 2 3	The making of Ceramic with black or brown-black finish	. 005
		20.2.0	in a wood campfire, at temperature lower than 500°C	571
		25.2.4	User-friendly LTCS	572
	25.3	Low-on	ergy modern ceramic processing and sustainable develop-	. 012
	20.0	mont	ergy modern cerainic processing and sustainable develop-	574
	25 /	The me	king of foamed clay bricks	578
	20.4 25.5	Corami	cs with no clay?	570
	25.0		apolymor route to high temperature coramics	580
	20.0	25.6.1	High tech Lougite and Kalsilite from geopolymor pro-	. 000
		20.0.1	cursors	580
		2562	High tech Pollucite β Spedumone Liebenbergite from	. 000
		20.0.2	mgn-tech i onucle, β -spodumene, medenbergite nom	589
		2563	Callium Cormanium based geopolymors	583
		25.0.5	Bally weed fiber manufacture	. 505
		23.0.4	Rock wool liber manufacture	. 000
26	The	manufa	cture of geopolymer cements	589
	26.1	Room t	comperature hardening geopolymer cements	.589
		26.1.1	Portland cement chemistry vs Geopolymer cement chem-	
			istry	.590
		26.1.2	Geopolymer cement is not alkali-activated cement	.591
	26.2	Geopol	ymer cement categories	. 593
		26.2.1	Slag-based geopolymer cement	. 593
		26.2.2	Rock-based geopolymer cement	.594
		26.2.3	Ferro-sialate-based geopolymer cement	.594
		26.2.4	Slag/fly ash-based geopolymer cement	.594
	26.3	Greenh	ouse CO ₂ mitigation fosters the development of geopoly-	
		mer cer	nents	.595
		26.3.1	Cement CO_2 emissions in developing countries	. 596
		26.3.2	Comparison between CaO, Na ₂ O and K ₂ O cementitious	509
		26 2 2	Examples of energy needs and low COs mitigation with	. 090
		20.0.0	Examples of energy needs and low- OO_2 intrigation with goopolymor compute	600
		26.2.4	Coopolymer compart for CO ₂ storage and convertise	. 000 609
	26.4	20.3.4 Additio	seoporymer cement for UO ₂ storage and sequestration	. 003
	20.4	26 / 1	Muscovita based mine toilings	. 004 604
		20.4.1 26 4 2	Kaolinitia shale wastes	. 004 605
		20.4.2		. 005

		26.4.3	Coal-waste mine tailings	605
		26.4.4	Coal honeycomb briquette ash	606
		26.4.5	Public water reservoir sludge	607
		26.4.6	Ferronickel slag	608
	26.5	The nee	d for dry mix geopolymer cement	609
		26.5.1	The use of solid silica $+$ solid alkalis $\ldots \ldots \ldots \ldots$	609
		26.5.2	Manufacture of powdered K-silicate with MR $SiO_2:K_2O$	
			$< 2 \ldots $	610
		26.5.3	Not realistic for mass production of geopolymer cements	611
	26.6	Replace	ment of (Na,K) soluble silicates with synthetic lavas \ldots	611
		26.6.1	The manufacture of synthetic lavas	612
		26.6.2	Molecular structure of synthetic lava	615
		26.6.3	The molecular structure of lava-based geopolymer cemen	t617
		26.6.4	Geopolymer cement mass production with synthetic lava	?618
27	Geor	olymer	concrete	623
	27.1	Heat-cu	red fly ash-based geopolymer concrete	625
		27.1.1	Mixing, casting, and compaction of heat-cured fly ash-	
			based geopolymer concrete	627
		27.1.2	Heat-curing of fly ash-based geopolymer concrete	628
		27.1.3	Design of heat-cured fly ash-based geopolymer concrete	
			mixtures	630
	27.2	Ambien	t-cured slag/fly as h-based geopolymer concrete $\ . \ . \ .$.	631
		27.2.1	Design of ambient-cured slag/fly ash-based geopolymer	
			concrete mixtures	632
		27.2.2	Heat of reaction, temperature rise during hardening	634
		27.2.3	Drying Shrinkage	634
	27.3	Short-te	erm properties of fly ash-based geopolymer concrete	636
		27.3.1	Behavior in compression	636
		27.3.2	Compressive strength of aggregates weaker than geopo-	co 7
		0799	lymer matrix	. 637
		27.3.3	Indirect tensile strength	620
	974	27.3.4 Long to:	m properties of fly ash based geopolymer concrete	620
	21.4	27 4 1	Compressive strength	630
		27.4.1 97.4.2	Compressive strength	641
	27.5	Z1.4.2 Reinford	concept and drying sinnikage	643
	27.0	Better t	han Portland cement concrete?	646
	21.0	Detter		. 010
28	Geor	olymer	s in toxic waste management	651
	28.1	Contain	ment with barriers	. 654
	28.2	Waste e	ncapsulation requires MK-750-based geopolymers	655
		28.2.1	Structural model for safe encapsulation	655
	00.0	28.2.2	Sate chemical bonding with MK-750-based geopolymers	656
	28.3	Heavy n	$\begin{array}{c} \text{netals in mine tailings} \\ \text{or } \mathbf{i} \\ \mathbf$. 657
		28.3.1	Solidification procedure	. 658
	90.4	28.3.2 The	Leachate testing	660
	28.4	I ne use	or geoporymers for paint sludge disposal	. 00U
		20.4.1		100

	28.4.2	Results			
28.5	Treatme	ent of arsenic-bearing wastes			
	28.5.1	Nature of the Problem			
	28.5.2	Geopolymeric Solidification			
28.6	Uraniur	n mining waste treatment			
	28.6.1	Specificity of uranium immobilization			
	28.6.2	The uranium waste sludge			
	28.6.3	Two-Step solidification technology			
	28.6.4	Results			
	28.6.5	Pilot-scale experimentation			
28.7	Geopoly	mers in other toxic-radioactive waste management ap-			
	plications				

Part I Polymers and Geopolymers

Chapter 1 Introduction

The discovery of a new class of inorganic materials, geopolymer resins, binders, cements and concretes, resulted in wide scientific interest and kaleidoscopic development of applications. From the first industrial research efforts in 1972 at the Cordi-Géopolymère private research laboratory, Saint-Quentin, France, until the end of 2019, thousands of papers and patents were published dealing with geopolymer science and technology. On August 31. 2005, the Geopolymer Institute (a non-profit scientific organization founded in 1979) was proud to announce in its News on line (www.geopolymer.org): "Since 1997, 80000 papers have been downloaded by 15000 scientists around the world at the geopolymer.org website". The extent of international scientific and commercial interest in geopolymers was evidenced by several large conferences. In France, the First European Conference on Soft Mineralurgy, organized by the Geopolymer Institute and sponsored by the European Economic Commission, was held at the University of Technology of Compiègne in June 1988 (Geopo*lymer* '88). Eleven years later in June-July 1999, the Geopolymer Institute organized the Second International Conference Geopolymere '99, held in Saint-Quentin; the published proceedings included 32 papers presented to the 100 scientists from over 12 countries. The Third International Conference, Geopolymer 2002 was held in Melbourne, Australia, in October 2002.

Since 2003, several national and international scientific institutions have organized "geopolymer sessions", "geopolymer seminars" and "geopolymer conferences". The Geopolymer 2005 World Congress was a tribute to the 26th anniversary of the creation of the Geopolymer Institute by J. Davidovits. The main topic of the world congress was Geopolymer-chemistry and sustainable Development. It gathered two major events in two different locations: the Fourth International Conference in Saint-Quentin, France, June-July, 2005, organized by the Geopolymer Institute; the International Workshop on Geopolymer Cements and Concrete in Perth, Australia, September 2005, chaired by V.J. Rangan, organized by Curtin University of Technology, Perth, the University of Alabama, USA, and sponsored by the National Science Foundation, USA. More than 200 scientists attended the congress and 85 international public and private research institutions presented a total of 75 papers. They cover a wide scope of topics ranging from geopolymer chemistry, industrial wastes and raw materials, geopolymer cements, geopolymer concretes (including fly ash-based geopolymers), applications in construction materials, applications in high-tech materials, matrix for fire/heat resistant composites, and applications in archaeology. The published proceedings (Geopolymer 2005) includes 60 selected papers and is titled: Geopolymer, Green Chemistry and Sustainable Development Solutions. In 2007, I started writing the 1rst edition of this book; the 2nd edition was published in 2008, the 3rd in 2011 and the 4th in 2015. In 2009, we agreed to propose every year two international events: a Geopolymer Symposium in January, at Daytona Beach, Florida, USA, within the frame of the International Conference on Advanced Ceramics and Composites, organized by the American Ceramic Society and Prof. W. Kriven from Illinois University, and a Geopolymer Camp in July, at Saint-Quentin, France, organized by the Geopolymer Institute. The 11th Geopolymer Camp 2019 was a tribute to the 40th anniversary of the creation of the Institut Géopolymère (Geopolymer Institute).

Geopolymers are ceramic-like inorganic polymers produced at low temperature, generally below 100°C. They consist of chains or networks of mineral molecules linked with covalent bonds. Because they are polymers, they must get a polymer terminology, very different from the traditional way in use by ceramicists or cement scientists. For example, the formula of one major clay mineral, kaolinite, is:

for a ceramicist $Al_2O_3 \cdot 2SiO_2 \cdot 2H_2O$,

for a chemist, $Si_2O_5Al_2(OH)_4$.

From a geopolymer standpoint we write $[\equiv Si-O-Al-(OH)_2]n$ with the covalent aluminum hydroxyl $-Al-(OH)_2$ side groups branched to the poly(siloxo) hexagonal macromolecule $[\equiv Si-O-]n$. This polymeric approach has profound consequences with regard to a better understanding of the geopolymerization mechanisms. In particular, metakaolin results from the dehydroxylation of the -OH groups in kaolinite, according to the reaction:

$$Si_2O_5Al_2(OH)_4 \Rightarrow Si_2O_5Al_2O_2 + 2H_2O$$

The reactive molecule consists of two different alumino-silicate oxides $Si_2O_5Al_2O_2$, namely:

$$[\equiv$$
Si-O-Al=O]n and $[\equiv$ Si-O-Al-O-]n.

This suggests strong chemical reactivity, as opposed to the traditional way of writing $2SiO_2 \cdot Al_2O_3$. Metakaolin is not alumina Al_2O_3 ! See the detailed chemical reaction mechanisms in the following sections. Other starting raw-materials are:

- rock-forming minerals, alumino-silicates,
- amorphous silica,
- and industrial by-products (alumino-silicates) like coal fly ashes, blast furnace slag.

They chemically react within two different synthesis routes:

- alkaline medium with (Na, K) hydroxides and soluble alkalisilicates yielding poly(silicates), poly(siloxo), poly(silico-aluminates), poly(sialate) types and,
- acidic medium (here with phosphoric acid) yielding poly(aluminophospho) types.

Geopolymers comprise following molecular units (or chemical groups) presently studied and implemented in several industrial developments:

- Si-O-Si-O- siloxo, poly(siloxo),
- Si-O-Al-O- sialate, poly(sialate),
- Si-O-Al-O-Si-O- sialate-siloxo, poly(sialate-siloxo),
- Si-O-Al-O-Si-O-Si-O- sialate-disiloxo, poly(sialate-disiloxo),
- (R)-Si-O-Si-O-(R) organo-siloxo, poly-silicone,
- Al-O-P-O- alumino-phospho, poly(alumino-phospho),
- Fe-O-Si-O-Al-O-Si-O- ferro-sialate, poly(ferro-sialate.

Hardening, or setting, or geopolymerization, occurs at low temperature, below 100°C, or at room temperature. The nature of the hardened geopolymer is either X-ray amorphous at ambient and medium temperatures, or X-ray crystalline at temperatures above 500°C for Na-based, and above 1000°C for K-based species respectively.

How should we consider geopolymers? Are they a new material, a new binder or a new cement for concrete? Geopolymers are all of these. They are new materials for coatings and adhesives, new binders for fiber composites, waste encapsulation and new cement for concrete. The properties and uses of geopolymers are being explored in many scientific and industrial disciplines: modern inorganic chemistry, physical chemistry, colloid chemistry, mineralogy, geology, and in all types of engineering process technologies. The wide variety of potential applications includes: fire resistant materials, decorative stone artifacts, thermal insulation, low-tech building materials, low energy ceramic tiles, refractory items, thermal shock refractories, bio-technologies (materials for medicinal applications), foundry industry, cements and concretes, composites for infrastructures repair and strengthening, high-tech composites for aircraft interior and automobile, high-tech resin systems, radioactive and toxic waste containment, arts and decoration, cultural heritage, archaeology and history of sciences.

1.1 Historical background

My chemistry background had focused on organic polymer chemistry and in the aftermath of various catastrophic fires in France between 1970–72, which involved common organic plastic, research on nonflammable and noncombustible plastic materials became my objective. In 1972, I founded the private research company Cordi SA, later called Cordi-Géopolymère. In my pursuit to develop new inorganic polymer materials, I was struck by the fact that the same simple hydrothermal conditions governed the synthesis of some organic plastics in alkali medium, as well as mineral feldspathoids and zeolites.

Thus, phenol and formaldehyde polycondense into the famous Bakelite invented by Bakeland at the beginning of the 20th Century, one of the oldest man-made plastic (Figure 1.1).

On the other hand, the alumino-silicate kaolinite reacts with NaOH at 100–150°C and polycondenses into hydrated sodalite (a tectoalumino-silicate, a feldspathoid), or hydroxysodalite (Figure 1.2).

From the study of the scientific and patent literature covering the synthesis of zeolites and molecular sieves — essentially in the form of powders — it became clear that this geochemistry had so far not been investigated for producing mineral binders and mineral polymers. I proceeded therefore to develop amorphous to semi-crystalline

Figure 1.1: Phenoplast polycondensation between phenol and formaldehyde, in alkali medium.

Figure 1.2: Polycondensation of kaolinite Si_2O_5 , $Al_2(OH)_4$ in alkali medium.

three-dimensional silico-aluminate materials, which I call in French "géopolymères", geopolymers (mineral polymers resulting from geochemistry or geosynthesis).

The first applications were building products developed in 1973– 1976, such as fire-resistant chip-board panels, comprised of a wooden core faced with two geopolymer nanocomposite coatings, in which the entire panel was manufactured in a one-step process (Davidovits, 1973). We coined it "*Siliface Process*". An unusual feature was observed to characterize the manufacturing process: for the first time, the hardening of organic material (wood chips and organic resin based on urea-formaldehyde aminoplast) occurred simultaneously with the setting of the mineral silico-aluminate (Na–poly(sialate) / quartz nanocomposite), when applying the same thermosetting parameters as for organic resin: 150–180°C temperature (Davidovits, 1976).

1.1.1 The invention of the first mineral resin, October 1975

Since 1972, we were involved in applying a methodology based on the transformation of kaolinitic clays. The material was wet clay and could only be processed through compression or extrusion. We did not have at our disposal a fluid binder, so far. The real breakthrough took place when, in 1975, we discovered at the CORDI laboratory a geopolymeric liquid binder based on metakaolin and soluble alkali silicate. I recognized the potential of this discovery and presented an *Enveloppe Soleau* for registration at the French Patent Office (Figure 1.3). Here is the English translation of the hand written text:

Figure 1.3: Enveloppe Soleau filed on 29/12/1975

Text of the Enveloppe Soleau filed on 29/12/1975, number 70528, at Institut National de la Propriété Industrielle, INPI, Paris. English translation from French:

"Since October 1, 1975 we study the behaviour of metakaolin in our Siliface system. The first goal was to find a process for the manufacture of synthetic zeolites (type Zeolite A) by reacting metakaolin + NaOH. We noticed that this mixture was prone to a very important exothermic reaction [t° exceeding 100°C after 1 hour of storage in a bag]. If we do not let this exothermic reaction to start at room temperature, namely if we cure immediately the mixture, then the exothermic reaction becomes very powerful and the product obtained is very hard after 2 minutes at 120°C; X-ray diffraction shows picks attributed to hydrosodalite and to Zeolite A. We immediately planed to use this exothermic reaction in the manufacturing of insulating blocks consisting entirely of a mineral core made of expanded shale or expanded glass spheres, agglomerated with metakaolin + NaOH. In a panel covered with a Siliface facing, the temperature in the center of a 15 cm thick core reaches 100°C after only 3–4 minutes. The addition of a binder such as Na-Silicate leads to a liquid coating, and allows reducing the quantity of mineral binder used in the process. It seems that metakaolin behaves as a hardener for Na-Silicate.

Consequently, a mixture involving Na-Silicate + NaOH + Meta-kaolin has the following advantages:

- Exothermicity (hardening to the heart of thick material);
- Reaction with Na-Silicate (very fast hardening of the liquid binder).

Tests already undertaken on: - zeolites; - agglomeration of wood chips (A2 panels); - sand agglomeration (foundry cores); - mineral and refractory fire barrier.

Another consequence of this discovery is that one can treat common clays at 500–600°C, to obtain a very reactive argillaceous raw material (metakaolin type) being able to be used in the preceding examples in place of pure metakaolin, together with Na-Silicate, or alone. This opens very interesting new prospects. It is a step towards more knowledge on the specific reactions involving mineral polymers, either by using natural raw materials for example standard clay like Clérac B16, dried, ground, or by performing the suitable treatment to transform them into reactive raw material. New patent filings will sanction all these discoveries. On December 20, 1975, J. Davidovits" *End of translation*.

It was the first mineral resin ever manufactured. The title of the patent, *Mineral polymer*, was self evident (Davidovits, 1979). The commercial product, coined GeopolymiteTM, was a good fire resistant alternative to organic resin. Then, Neuschäffer (1983) at the licensed German Company Dynamit Nobel (later Hüls Troisdorf AG) discovered the high reactivity of silica and alumina fumes, by-products of the manufacture of high-tech ceramics.

In early 1983, the Chairman of Lone Star Industries Inc., at this time the leading cement manufacturer on the American continent, was traveling in Europe and learned about our new geopolymeric binders. Lone Star Industries and Shell Oil Company had just announced the formation of a corporation to develop, produce, and market a new class of materials that were expected to have a wide-ranging impact on construction, architectural, and engineering applications. These materials were made from mineral aggregates combined with organic polymers and monomers. In other words, it was an "organic polymer concrete". Shell Oil supplied the chemical expertise in organic polymers, while Lone Star supplied the mineral aggregates. By enlisting our new inorganic geopolymers, Lone Star took the opportunity to challenge Shell Oil's chemical expertise. In August 1983, with James Sawyer as Head of Lone Star's research laboratory in Houston, Texas, I started to develop early high-strength geopolymeric binders and cements based on both geopolymeric and hydraulic cement chemistries. Within one month, Lone Star Industries Inc. formed the development company, Pyrament, which was exclusively dedicated to the implementation of this new class of cement. A few months later, Lone Star separated from the Shell Oil deal. It was discovered that the addition of ground blast furnace slag, which is a latent hydraulic cementitious product, to the poly(sialate) type of geopolymer, accelerates the setting time and significantly improves compressive and flexural strength. The first Davidovits and Sawyer (1985) patent was filed in Feb. 22, 1984, and titled "Early High-Strength Mineral Polymer" (US Patent). The corresponding European Patent, filed in 1985, is titled "Early High-Strength Concrete Composition" and these patents disclose our preliminary finding from the research carried out in August-September of 1983. Geopolymer cements are acid-resistant cementitious materials with zeolitic properties that can be applied to the long-term containment of hazardous and toxic wastes.

At Lone Star, in 1984, Richard Heitzmann and James Sawyer likewise blended Portland cement with geopolymer. Their purpose was to take advantage of the good properties of geopolymeric cement along with the low manufacturing cost of Portland cement. The resulting Pyrament[®] Blended Cement (PBC) was very close to alkaliactivated pozzolanic cement. It comprised 80 % ordinary Portland cement and 20 % of geopolymeric raw materials (Heitzmann *et al.*, 1989). Pyrament PBC was recognized in the construction industry for its ability to gain very high early strength quite rapidly (US Army Corps of Engineers, 1985). It was the ideal material for repairing runways made of concrete, industrial pavements, and highway roads. In the case of a runway, a 4–6 hours hardening is enough to allow the landing of an Airbus or a Boeing. The geopolymeric cement reaches a compression strength of 20 MPa after 4 hours, whereas plain concrete gets to this strength after several days. As of fall 1993, Pyrament concrete was listed for over 50 industrial facilities and 57 military installations in the USA, and 7 in other countries, and for nonmilitary airports. In 1994 the US Army Corps of Engineers released a well-documented study on the properties of Pyrament Blended Cements based concretes, which are performing better than had ever been expected for high-quality concretes.

In the field of so-called high-tech applications, since 1982, the French aeronautic company Dassault Aviation (Vautey, 1990) has used geopolymer molds and tooling in the development of French Airforce fighters (Davidovits *et al.* 1991). More than a hundred tooling and other items have been delivered for aeronautic applications and SPF Aluminum processing. In 1994 the American Federal Aviation Administration (FAA) with R. Lyon, initiated a cooperative research program to develop environmentally friendly, fire resistant matrix materials for aircraft composites and cabin interior applications. The Geopolymer composites were selected by FAA as the best candidate for this program (Lyon, 1997).

Environmentally-driven geopolymer applications are based on the implementation of (K,Ca)-poly(sialate-siloxo) / (K,Ca)-poly(sialatedisiloxo) cements. In industrialized countries (Western countries) emphasis is put on toxic waste (heavy metals) and radioactive waste safe containment. On the other hand, in emerging countries, the applications relate to sustainable development, essentially geopolymeric cements with very low CO_2 emission. Both fields of application are strongly dependent on politically driven decisions. Heavy metal waste encapsulation with geopolymer started in 1987, in Canada, with the financial support of CANMET Ottawa, Ontario Research Foundation, Toronto, and Comrie Consulting (Davidovits and Comrie, 1988). The safe containment of uranium mine tailings and radioactive sludge started in 1994 within the European research project GEOCISTEM, funded by the European Union. The GEOCISTEM project was aimed at manufacturing cost-effectively new geopolymeric cements (Geocistem, 1997). It was experimented on two important uranium-mining locations of Wismut, former East Germany,

with the collaboration of BPS Engineering, Germany. Our results clearly show that solidification with geopolymeric cement (K,Ca)–poly(sialate-siloxo) is a prime candidate to cost-efficiently fill the gap between conventional concrete technology and vitrification methods (Hermann *et al.*, 1999).

Major efforts were dedicated to greenhouse CO_2 mitigation with the development of low CO_2 geopolymer cements. My research on this very important geopolymer application started in 1990 at Penn-State University, Materials Research Laboratory, USA. The production of 1 tonne of kaolin based-geopolymeric cement generates 0.180 tonnes of CO_2 , from combustion carbon-fuel, compared with 1 tonne of CO_2 for Portland cement, i.e. six times less. Fly ash basedgeopolymeric cement has attracted intensive research world-wide because it emits even less CO_2 , up to nine times less than Portland cement. This simply means that, in newly industrializing countries, six to nine times more cement for infrastructure and building applications might be manufactured, for the same emission of green house gas CO_2 (Davidovits, 1993). One particular project, GEOASH, dealt with the study of European fly ashes and the implementation of user-friendly processes (GEOASH, 2004–2007). However, new globalwarming concerns are no longer supporting the implementation of fly ash-based cement technologies. The Geopolymer Institute recommends instead the development of Ferro-sialate geopolymer cements. See our recent article on the subject titled "A continent is on fire: stop promoting fly ash based geopolymer cements, as well as in Chapter 13 and Chapter 26, section 26.3.3.2 (Davidovits, 2020).

1.2 The scope of the book

Although review articles and conference proceedings cover various aspects of the science and application of geopolymers, a researcher or engineer is still at a loss to readily obtain specific information about geopolymers and their use. It is this void that we hope to fill with this book.

There are two main purposes in preparing this book: it is an introduction to the subject of geopolymers for the newcomer to the field, for students, and a reference for additional information. Background details on structure, properties, characterization, synthesis, chemistry applications are included. Each chapter is followed by a bibliography of the relevant published literature including patents. There are many examples in geopolymer science where an issued patent is either a primary reference or the only source of essential technical information. Excerpts from the more important patents are included in some chapters.

The industrial applications of geopolymers with engineering procedures and design of processes is also covered in this book.

1.3 Early observations

In the 1930s, alkalis, such as sodium and potassium hydroxide, were originally used to test iron blast furnace ground slag to determine if the slag would set when added to Portland cement. In the course of studying the testing systems for slag, Belgian scientist Purdon (1940) discovered that the alkali addition produced a new, rapid-hardening binder (see Table 1.1). Alkali-activated slag cements (called Trief cements) were used in large-scale construction as early as the 1950s. The usual activation called for adding 1.5 % NaCl and 1.5 % NaOH to 97 % ground slag mix (U.S. Army Engineer Waterways Experiment Station, 1953). In 1957, Victor Glukhovsky, a scientist working in the Ukraine at the KICE (Kiev Institute of Civil Engineering in the USSR) developed alkali-activated slag binders and in the 1960s and 1970s made major contribution in identifying both calcium silicate hydrates, and calcium and sodium alumino-silicate hydrates as solidification products. He also noted that rocks and clay minerals react during alkali treatment to form sodium alumino-silicate hydrates, confirming earlier work carried out on clay reactivity (see below). Glukhovsky called the concretes produced with this technology "soil silicate concretes" (1959) and the binders "soil cements" (1967). More recently, cement scientists coined these products AAM, alkali-activated-materials and also claimed that geopolymer cements were AAM, generating confusion. Alkali-activated-materials are not geopolymers because they are not polymers, only hydrates of the types NASH and KASH (see for more details in Chapter 26, section 26.1.2 and the video series Why AAM are not geopolymers).

Earlier, Flint *et al.* (1946), at the National Bureau of Standards were developing various processes for the extraction of alumina starting from clays and high-silica bauxites. One intermediary step of the extraction process involved the precipitation of a sodalite-like com-

	Zeolite molecular sieve	Alkali-activation (slag)	Hydrosodalite (kaolin)	Geopolymer
1930			1934 : Olsen (Netherland)	
1940	1945 : Barrer (UK)	1940 : Purdon (Belgium)	1945 : US Bureau of Standard (USA) 1949 : Borchert, Keidel (Germany)	
1950	1953 : Barrer, White (UK) 1956 : Milton (USA)	1953: Trief Cement (USA) 1957: Glukovsky (Ukraine) soil-silicate concrete		
1960			1963 : Howell (USA) 1964 : Berg <i>et al.</i> (USSR) 1969 : Besson <i>et al.</i> (France)	
1970			1972 : Davidovits (France) <i>Siliface Process</i>	1976 : Davidovits <i>(IUPAC terminology)</i> 1979 : Davidovits (France) <i>Geopolymer</i>

Table 1.1: Milestones in alumino-silicate chemistry.

pound. Borchert and Keidel (1949) prepared hydrosodalite (Na–PS) by reacting kaolinite in a concentrated NaOH solution, at 100°C. Howell (1963) obtained a Zeolite A type, using calcined kaolin (meta-kaolin) instead of kaolinite, preventing the formation of hydrosoda-lite.

In 1972, the ceramicist team Jean Paul Latapie and Michel Davidovics confirmed that water-resistant ceramic tiles could be fabricated at temperatures lower than 450°C, i.e. without firing. One component of clay, kaolinite, reacted with caustic soda at 150°C. In fact, the industrial application of this kaolinite reaction with alkali began in the ceramic industry with Niels Olsen (1934) and was later on reinvented in 1964 by Berg *et al.* (1970), a Russian team, but without any successful industrial implementation.

In 1969, Besson, Caillère and Hénin at the French Museum of Natural History, Paris, carried out the synthesis of hydrosodalite from various phyllosilicates (kaolinite, montmorillonite, halloysite) at 100°C in concentrated NaOH solution, (Besson *et al.*, 1969). In 1972, at CORDI laboratory in Saint-Quentin, we developed a technology based on this geosynthesis, which has been disclosed in various patents issued on the applications of the so-called "Siliface-Process" (Davidovits and Legrand, 1974). To a natural kaolinite/quartz blend (50/50 weight ratio) was added and mixed solid NaOH in the proportion of 2 moles or less of NaOH for 1 mole Al_2O_3 of the contained kaolinite, and water (1–1.5 g water for 1 g NaOH). The resulting granules were cold-pressed at 15 MPa into a green body, which was then hot-pressed (thermosetting process) in a mold equipped with a porous layer for water evaporation.

The thermosetting parameters were:

- Temperature: 130° C to 180° C;
- Applied hydraulic pressure: higher than the saturated vapor pressure of water, for the selected temperature, i.e. 10 to 30 bars;
- Time: one minute per millimeter thickness at 150°C or 10 minutes for a 10 millimeters thick plate. 65 to 75 % of the total time is devoted to degassing water.

The setting time is relatively short. In the absence of any pervious device, i.e. when degassing is not working, the polycondensation into hydrosodalite occurs very rapidly in a time as short as 15–20 seconds per millimeter thickness, at 180°C and 40 kg/cm² hydraulic pressure. Yet, due to the high internal pressure of water and the danger of explosion, the press must be equipped with safety devices (see for more details in Chapter 7). Otherwise, it is recommended to wait until the item has cooled down to room temperature before opening the press.

1.4 Phosphate-based geopolymer

Phosphate ceramics are synthesized at room temperature and they set rapidly like conventional polymers. They contain naturally occurring mineral phases, notably apatite. They represent another variety of mineral geopolymer, where Si is totally or partially replaced by P. They are formed by an acid-base reaction between a metal oxide and an acid phosphate. Virtually any divalent or trivalent oxide that is sparingly soluble may be used to form these phosphate geopolymers.

They have found a wide range of applications such as dental cements, construction materials, oil well cements, and hazardous and radioactive waste stabilization. The main difference between the silicate based geopolymers and phosphate geopolymers, however, is their syntheses. Poly(sialate) geopolymers and their derivates are synthesized in alkaline environment, but phosphate geopolymers are fabricated by acid-base reactions.

1.4.1 Phosphate geopolymers

A very wide range of phosphate geopolymers may be synthesized by acid-base reaction between an inorganic oxide (preferably that of divalent and trivalent metals) and an acid phosphate. The reaction product is generally a poly(hydrophosphate) or an anhydrous poly(phosphate) that consolidates into a ceramic. The following are the most common examples (Wagh and Yeong, 2003; Wagh, 2004)

$$2\text{CaO} + \text{Ca}(\text{H}_2\text{PO}_4)_2 + \text{H}_2\text{O} \Rightarrow$$
$$\text{CaO} + 2\text{CaHPO}_4 \cdot \text{H}_2\text{O} \Rightarrow \text{Ca}_3(\text{PO}_4)_2 + 2\text{H}_2\text{O}$$
(1)

$$MgO + KH_2PO_4 + 5 H_2O \Rightarrow MgKPO_4 \cdot 6H_2O$$
 (2)

These reactions occur at room temperature. By controlling the rate of reaction, ceramics can be formed. With trivalent oxides, similar ceramics can be formed at a slightly elevated temperature. A good example is berlinite (AlPO₄), which is formed by the reaction between alumina and phosphoric acid:

$$Al_2O_3 + 2H_3PO_4 \Rightarrow 2AlPO_4 + 3H_2O$$
 (3)

It was also demonstrated that phosphate geopolymers of trivalent oxides such as Fe_2O_3 and Mn_2O_3 might be produced by reduction of the oxide and then acid-base reaction of the reduced oxide with phosphoric acid. The reaction may be described by the following equation:

$$X_2O_3 + X + 3H_3PO_4 + nH_2O \Rightarrow 3XHPO_4 \cdot (n+3)H_2O$$
 (4)

where X is Fe or Mn.

1.4.2 High-molecular phosphate-based geopolymers: cristobalitic $AlPO_4$

Berlinite (AlPO₄) is the only known mineral to be isostructural with quartz. Isostructural means that they have the same structure although the two minerals have rather different chemistries. Quartz, SiO₂, would seem to be very different from berlinite, AlPO₄. But if the formula of quartz is written as SiSiO₄ instead of $2(SiO_2)$ then the similarity is obvious. The reason that berlinite is able to have the same structure as quartz is because the aluminum and phosphorus ions are of similar size to silicon ions with following bond lengths Si-O 1.63 Å, P-O 1.63 Å, Al-O 1.73 Å. Thus the same structure can be achieved since the aluminums and phosphorus can completely replace the silicons without alteration of the quartz structure. The cristobalite form of aluminum phosphate may be obtained by heating the normal berlinite form of aluminum phosphate at an elevated temperature which is preferably in excess of 1000°C.

The synthesis of cristobalitic (high-molecular) $AlPO_4$ geopolymers follows two different routes. The first process includes sol-gel chemistry whereas the second system involves the reaction between phosphoric acid and metakaolinite MK-750 (see in Chapter 14).

1.5 Organo-mineral geopolymers

1.5.1 Silicone

The similarity of the siloxane (Si-O-Si) structure in organo-silicones to the chains, rings, and networks of silicon and oxygen found in silica and the silicate minerals, for example in quartz, has been pointed out many times. Almennigen *et al.* (1963) reported the correspondence in a study of disiloxane H₆Si₂O. As observed by Noll (1968) it is possible to pass from the polymeric silicate to the polymeric covalent molecules of an organosiloxane by replacing the bridging oxide ions of the silicate anions with methyl groups. The structures that result from this replacement closely resemble the silicate and aluminosilicate molecules: monomers, dimers, trimers, etc., rings, chains, sheets and frameworks of corner-sharing silicate [SiO₄] groups.

Chapter 2 and Chapter 15 focus on silicone poly(organo-siloxane). When the organic radical is methylene the structures of the oligomeric poly-methyl-siloxanes are identical with those of poly(siloxonate) (Si-O-Si-O) and poly(sialate) (Si-O-Al-O-Si) geopolymers.

1.5.2 Hybrid organo-mineral geopolymers

This new class of compounds was first obtained by incorporating the geopolymer into the organic polymer structure, adapting the chemical composition of the components. For example a bi-functional epoxy resin, Diglycidyl Ether of Bisphenol A (DGEBA), was mixed with 20 wt% of MK-750 based geopolymer slurry, with a curing agent in an aqueous medium. The resulting hybrid material has excellent mechanical properties and improved fire resistance.

The new developments are focusing on improving the mechanical and physical properties of the geopolymer itself. However, both organic and geopolymer phases are physically incompatible. Obtaining a homogeneous mixture without phase separation requires a new approach (see in Chapter 15).

1.5.3 Humic-acid based: kerogen geopolymer

T.K. Yen and his team, working on the transformation of geomolecules through geochemical processes during diagenesis, (Kim *et al.*, 2004, 2006) have drawn attention to the concept of geopolymer in association with kerogen and petroleum. Kerogen-geopolymer is the most stable material and the final alternating product in the Earth. Some geopolymeric materials can last for a long time due to their unique geopolymeric structure, so-called three-dimensional crosslink. Geopolymers can be classified into two major groups: pure inorganic geopolymers and organic containing geopolymers, synthetic analogue of naturally occurring macromolecules (Kim *et al.*, 2004, 2006). The small content of organics is a key parameter governing the strength and durability of material in a large volume of inorganics. Organic compounds can be incorporated into refractory macromolecules such as lignin and melanodin or humic materials (Henrichs 1992). Humic materials represent an inorganic-organic structure.

Diagenesis of organic matter leads from biopolymers synthesized by organisms through "humin" to Kerogen, a geopolymer, by partial destruction and rearrangement of the main organic building blocks (Figure 1.4). Kerogen is considered to be the major starting material for most oil and gas generation as sediments are subjected to

Figure 1.4: Evolution of organic matter to kerogen-geopolymer

geothermal heating in the subsurface. It is the most abundant form of organic carbon on Earth, about 1000 times more abundant than coal, which forms primarily from terrigenous remains of higher plants. Kerogen is a geopolymer that contains a high content of organics. Kerogen geopolymers generally occur in numerous forms: some have more organics and less inorganics, while others have the opposite. It is, however, evident that both inorganics and organics are required in a mix at a certain ratio, which will result in a geopolymeric structure. This geopolymeric structure exhibits a similar organization to human bone and teeth, typical inorganic-organic composites that show extreme durability and mechanical strength. The mechanism of geomacromolecule formation involves the crosslink reaction between the inorganic and organic materials.

References

- Almennigen A., Bastiansen O., Ewing V., Hedberg K. and Traetteberg M., (1963), Acta Chem. Scand. 17, 2455–2460.
- Berg L.C., Demidenko B.A., Reminikova V.I. and Nisamov N.S., (1970), Stroitel'nye Materialy (USSR), 10, 22.
- Besson H., Caillère S. and Henin S., (1969), Conditions de préparation de l'hydrosodalite à basse température, *C. Rend. Acad. Sci.*, D269, 1367.

Borchert W. and Keidel J., (1949), Heidelb. Beitr. z. Min. u. Petr., 1. 2.

- Davidovits J., (1972), Procédé de fabrication de panneaux agglomérés et panneaux resultant de l'application de ce procédé, French Patent Application FR 72.38746 (FR 2,204,999) and FR 73.35979 (FR 2,246,382); US Patent 3,950,470, Process for the fabrication of sintered panels and panels resulting from the application of this process.
- Davidovits J. and Legrand J.-J., (1974) French Patent FR 2,324,427 filed Jan.
 11. 1974; see also US Patent 4,028,454 (1977), filed Dec. 31. 1974; United Kingdom Patent UK 1.481.479 (1977), filed Jan. 9, 1975; German Patent DE 25 00 151 (1979), filed Jan. 3, 1975.
- Davidovits J., (1976), Solid phase synthesis of a mineral blockpolymer by low temperature polycondensation of alumino-silicate polymers, *IUPAC International Symposium on Macromolecules* Stockholm; Sept. 1976; Topic III, New Polymers of high stability.
- Davidovits J., (1979), Polymère Minéral, French Patent Application FR 79.22041 (FR 2,464,227) and FR 80.18970 (FR 2,489,290); US Patent 4,349,386, Mineral polymer.
- Davidovits J., (1993), Carbon-Dioxide Greenhouse-Warming: What Future for Portland Cement, Proceedings, Emerging Technologies Symposium on Cement and Concrees in the Global Environment, 21p, Portland Cement Association, Chicago, Illinois, March 1993.
- Davidovits J., (2020), A continent is on fire: stop promoting fly ash based geopolymer cements, *Research Gate*, DOI:10.13140/RG.2.2.34889.29283.
- Davidovits J. and Sawyer J.L., (1985), Early high-strength mineral polymer, US Patent 4,509,985, 1985, filed February 22, 1984.
- Davidovits J. and Comrie D., (1988), Archaeological long-term durability of hazardous waste disposal: preliminary results with geopolymer technologies, *Division of Environmental Chemistry, American Chemical Society*, Toronto, 1988, Extended Abstracts, 237–240. See also: Long Term Durability of Hazardous Toxic and Nuclear Waste Disposals, *Geopolymer '88 Proceedings*, 125–134.
- Davidovits J. and Davidovics M., (1991), Geopolymer: Ultra-High Temperature Tooling Material for the Manufacture of Advanced Composites", SAMPE Symposium, Vol.36, 2, pp. 1939–1949, Society for the Advancement of Material and Process Engineering, Covina, California, USA.
- Flint E.P., Clarke W.F., Newman E.S., Shartsis L., Bishop D.L. and Wells L.S., (1946), J. Res. Nat. Bur. Stand., 36, 63.
- GEOASH (2004–2007), The GEOASH project was carried out with a financial grant from the Research Fund for Coal and Steel of the European Community. The GEOASH project is known under the contract number RFC-CR-04005. It involved: Antenucci D., ISSeP, Liège, Belgium; Nugteren H.and Butselaar-Orthlieb V., Delft University of Technology, Delft, The Netherlands; Davidovits J., Cordi-Géopolymère Sarl, Saint-Quentin, France; Fernández-Pereira C. and Luna Y., University of Seville, School of Industrial Engineering, Sevilla, Spain; Izquierdo and M., Querol X., CSIC, Institute of Earth Sciences "Jaume Almera", Barcelona, Spain.
- Geocistem (1997), BRITE-EURAM European research project BE-7355-93, GEO-CISTEM, Synthesis Report and Final Technical Report, July 1997. GEOCIS-TEM is the acronym for "cost effective GEOpolymeric Cements fo Innocuous Stabilisation of Toxic EleMents". The primary objective of the Geocistem re-

search project was the fabrication of alkali-melilitic glass $(Ca,Na,K)_2[(Mg,Fe^{2+},Al,Si)_3O_7]$. Vitrification at temperatures ranging from 1200°C to 1350°C and mineral binder formulations were performed by J. Davidovits in the laboratory of Cordi-Géopolymère SA, Saint-Quentin, France. The selection of European geological materials was carried out by – P. Rocher, BRGM Bureau de Recherches Géologiques et minières, Orléans, France, – D. Gimeno, Geology Dept. University of Barcelona, Spain, – C. Marini and S. Tocco, University of Cagliari, Italy. MAS-NMR spectroscopy was performed by Z. Gabelica at that time in Namur University, Belgium.

- Glukhovsky V.D., (1965), Soil silicates, Their Properties, Technology and Manufacturing and Fields of Application, *Doct Tech Sc. Degree thesis*, Civil Engineering Institute. Kiev, Ukraine (former USSR).
- Heitzmann R.E, Gravitt, B.B. and Sawyer, J.L., Cement Composition Curable at Low Temperature, US Patent 4,842,649, 1989.
- Henrichs S.M., (1992), Early diagenesis of organic matter in marine sediments: progress and perplexity. *Mar. Chem.* 39, 119–149.
- Hermann E., Kunze C., Gatzweiler R., Kiessig G. and Davidovits J., (1999), Solidification of various radioactive residues by Geopolymere with special emphasis on long-term stability, *Geopolymer '99 Proceedings*, 211–228.
- Howell P.A., (1963), US Patent 3,114,603.
- Kim D., Lai H.-T., Chilingar G.V., Yen T.F., (2006), Geopolymer formation and its unique properties, *Environ. Geol*, 51[1], 103–111.
- Kim D., Petrisor I.G., Yen T.F., (2004), Geo-polymerization of biopolymers: a preliminary inquiry. Carbohyd Polym. 56, 213–217.
- Lyon R.E., Foden A.J., Balaguru P.N., Davidovits J. and Davidovics M., (1997), Properties of Geopolymer Matrix-Carbon Fiber Composites, *Fire and Materi*als, 21. 67–73.
- Neuschäffer K.H., Engels H.W., Gebert H.J., Laube R.W. and Zoche G., (1985), US Patent 4,522,652; see also K.H. Neuschäffer, P. Spielau, G. Zoche and H.W. Engels US Patent 4,533,393 (1985); K.H. Neuschäffer, P. Spielau, H.W. Engels and G. Zoche US Patent 4,608,795 (1986).
- Noll W., (1968), Chemistry and Technology of Silicone, Academic Press, N.Y. in particular, Chapter 6.3 (pp. 287 -317) on the "Siloxane Bonds in Molecules of Siloxanes and Anions of Silicates."), (First published in the German language under the title "Chemie und Technologie der Silicone", 1960, Verlag Chemie, Germany).
- Olsen N., (1934), German Patent 600,327.
- Purdon A.O., (1940), L'action des alcalis sur le laitier de haut-founeau (The action of alkalis on blast furnace slag), Journal de la Société des Industries Chimiques, Bruxelles, Belgium, (Journal of the Society of Chemical Industry), 59, 191–202.
- US Army Corps of Engineers, (1986), Malone P.G., Randal C.A. and Kirkpatrik T., Potential for Use of Alkali-Activated Silico-Aluminate Binders in Military Applications, *Report WES/MP/GL-85-15*, Corps of Engineers, Vicksburg, Mississipi.
- US Army Corps of Engineers, (1994), Performance of Concretes Proportioned with Pyrament Blended Cement, by Tony B. Husbands, Philip. G. Malone, Lilian D. Wakeley, US Army Corps of Engineers, *Final Report CPAR-SL-94-2*, April 1994.

- Vautey P., (1990), Thermoplastic and Thermosetting Composites for Structural Applications, Comparison of Mechanical Properties, French Aerospace '90 Aeronautical Conference, Washington, D.C., June 12–14, 1990 pp. 1–22.
- Wagh A.S., and Jeong S.Y., (2003), Chemically Bonded Phosphate Ceramics: I. A Dissolution Model of Formation, J. Ceram. Soc., 86 [11] 1838–1844.
- Wagh A.S., (2004), Chemically Bonded Phosphate Ceramics A Novel Class of Geopolymers, *Proceedings of the 106th Ann. Mtg. of the American Ceramic Society*, Indianapolis.

Publications of the Geopolymer Institute

(www.geopolymer.org)

- Geopolymer '88, Proceedings of the First European Conference on Soft Mineralulgy, June 1988, Compiègne, France, edited by Joseph Davidovits and Joseph Orlinski.
- Geopolymere '99, Proceedings of the Second International Conference Géopolymère '99, Saint-Quentin, France, June 30-July 2, 1999, edited by Joseph Davidovits, Ralph Davidovits and Claude James.
- Geopolymer 2005, Proceedings of the World Congress Geopolymer 2005, Geopolymer, Green Chemistry and Sustainable Development Solutions, 4th International Geopolymer Conference, Saint-Quentin, France, July 2005, Geopolymer Workshop, Perth, Australia, Sept. 2005, edited by Joseph Davidovits.
- Geopolymer Chemistry and Applications, by Joseph Davidovits, 1st edition march 2008, 2nd edition June 2008, 3rd edition July 2011, 4th edition November 2015, 5th edition March 2020.
- Why Alkali-Activated-Materials (AAM) are not Geopolymers, video series (Parts 1-4) at https://www.geopolymer.org/faq/alkali-activated-materials-geopolymers/ and Technical Paper 25 in the Geopolymer Institute Library.