The geopolymer brick L.T.G.S.

The geopolymer LTGS brick is an ideal construction technology for emerging countries, because it offers many characteristics that fulfills the population demands.

This brick uses a very cheap material available in great quantity: lateritic clay earth. This special and abundant earth, mixed with a simple geopolymer binder is compressed to give the shape of a brick then heated in a furnace. Heated at 85°C, LTGS brick is water stable and has enough compressive strength to build a wall. Heated at 250°C, it resists to freezing. At 450°C, its strength increases more, so that it is possible to manufacture structural elements like beams for doors and windows. Compared to a traditional brick fired at 1000°C in a kiln, the LTGS brick needs about eight times less energy for an equivalent strength. Contrary to a traditional brickyard, it requires less equipment and is less expensive to produce. A traditional brickyard must have a certain size before being profitable, whereas LTGS brick can be produced by small brickyards in a village or a small city with less equipment and finance.
But beyond its strength identical to traditional brick, its lower manufacturing cost and its low energy consumption, a house built out of LTGS brick will be naturally air-conditioned and fresher. This "interior comfort" quality or "passive cooling", alike pisé, rammed earth or other earth materials, is related to the essential physical and chemical characteristics of geopolymers for LTGS bricks. These geopolymers, which constitutes the matrix of the brick, have zeolitic properties, i.e. the property "to breathe", to be in constant hygrometrical balance with the interior of a dwelling in order to be an excellent insulation material against heat. We know that, in hot and dry areas, the traditional earth material is providing a comfort much higher than modern insulating material used in industrialized countries. LTGS bricks absorb moisture. At night, they store condensation moisture from the surrounding air. During the day, they release this moisture, either inside the house if the relative humidity should be compensated, or outside. So there is evaporation, therefore a drop in the temperature of the material, therefore a cooling of the house and insulation against the heat!

CORDI-Géopolymère has decided to reveal this technology and to explain how to manufacture it for FREE. The LTGS brick technology is patented in France under the number 80 20386, filed on the 23 september 1980. It is now in the public domain, which means any person in the world can commercially exploit it without the agreement of CORDI-Géopolymère. However, this system is not understandable by the lay man or the handyperson who wants to build a wall in his garden, and unfortunately grocery stores are not selling the required materials! The person who wishes to manufacture LTGS bricks needs chemical and material science backgrounds because it requires some equipments and to develop - invent the right formula for each lateritic soil.

For those who are interested to commercially develop this business, CORDI-Géopolymère's expertise can accelerate the process and the development of a formula adapted to each area in order to guarantee the quality of the result. This R&D company will transfer this new process to industries, but will not sell products. Thus, it will teach companies how to manufacture these bricks in geopolymer and to develop the good formula adapted to their needs. Then, they will be free to extend this business to other countries, in all independence.
5. Geopolymeric Cross-Linking (LTGS) and Building materials

Claude Boutterin and Joseph Davidovits

Summary:
After a concise presentation of the chemical principles governing the LTGS geopolymeric cross-linking with the main mineralogical components of soils, earths and clays, the authors present their experiments for a rational use of lateritic materials. Several tests were carried out with African soils of various origins but the standardization of the processes was made by using a material extracted in Provence, France.

The geopolymerisation techniques make it possible to obtain building materials meeting all the architectural needs:
- water stable bricks, hardened at room temperature.
- ceramic bricks with maximum heating from 85°C to 450°C (solar and simple wood fire)
- cement and hydraulic mortar from laterites.
- wall and floor coatings
- roof

5.1 Introduction

The preceding conference, held by Mr Hubert Penicaud on the hygrothermic characteristics of earth materials, constitutes an excellent introduction to my presentation dedicated to the geopolymerisation techniques. Indeed the climatic comfort quality of the earth material is acknowledged.

But Mr. Penicaud emphasized that the degree of comfort was related to the kinetics of water migration through the material. Thus, although the earth material is able to absorb a great quantity of moisture, desorption is carried out relatively slowly. Theoretically, the material ensuring maximum climatic comfort must be able to quickly absorb moisture and to desorb it also quickly, ideally by following the day and night cycles. The geopolymerisation techniques allow the earth material to fulfil this function.

The LTGS geopolymeric cross-linking is an application of the fundamental research carried out these last 20 years in mineralogy and geology.

We know that nature is constituted of 3 distinct reigns: the animal reign, the vegetable reign, and the mineral reign. For 150 years, the aim of chemical science was the understanding and replication of various materials characterizing the animal and vegetable reign. This biochemical research leads to the creation of plastics, synthetic fibres, biochemistry, and modern medicine.

But it is only since 1970 that chemical, mineralogical, and geological sciences allowed the development of materials being able to replicate the mineral reign.

One can now manufacture in laboratory almost all types of mineralogical materials, but the most spectacular results are obtained with geopolymers of the aluminosilicate or polysialate type. Thus, we obtain mineral structures equivalent to many natural components like feldspaths, zeolites, and amphiboles. We know that the manufacture of these minerals is easy, it is done at
low temperature i.e. under simple normal climatic conditions, or when necessary at relatively
moderate temperatures ranging between 45° and 100°C.

Let us return now to the subject of this conference: the use of earth materials. We know that
earth consists of argillaceous materials and that these argillaceous materials are the result of the
climatic erosion of rocks such as granites. In other words, natural erosion, degradation due to the
climate, transforms the feldspathic rocks into sedimentary minerals such as clays.

New research in mineralogy and geology showed the various kinetics of reaction which made
it possible to reverse the mineralogical timescale, i.e. to transform the argillaceous sediment into
a rock, in other words to make the reverse of what had been made by nature. The low
temperature geopolymeric setting (L.T.G.S.) uses these reactional principles.

LTGS transforms any argillaceous material into a group of mineral products, which have the
characteristics of rocks, i.e. insensitivity to water, resistance to temperature, hardness, etc.

The following elements were established with an argillaceous material containing
approximately 50% of clay of the kaolinite type, which is slightly different from the simple earth
materials, generally employed in adobe, pisé, rammed earth, or stabilized soils which,
sometimes, contain only 10 to 15% of argillaceous material. It is obvious that according to the
quantities of argillaceous materials present or not in the soil, it will be necessary to adapt the
formulae. For example, with a soil containing 25% or less argillaceous material, the quantities of
reagents will have to be decreased by approximately 50%.

5.2 Stabilization of lateritic soils

The soils that are generally designated under the very vague term of laterite are rich in Iron
and Aluminium sesquioxides such as goethite, hematite, gibbsite, and boemite.

The argillaceous matrix is generally based on hydrated aluminosilicates of the SiO₂/Al₂O₃= 2
(type kaolinitic) type or SiO₂/Al₂O₃= 4 (type montmorionitic) or more. In the areas of this
planet where we meet these soils, it is rather difficult to manufacture bricks by the traditional
process of firing at high temperature around 900° to 1100°C.

The simplest process consists in taking these soils and drying them in open-air. It is the
technique of pisé, rammed earth, adobe, and brick dried in the sun, strongly used in a majority of
countries in Africa. A more elaborate process consists in mixing these soils with ordinary
Portland cement, and to make blocks or bricks with a hydraulic binder. Results are starting to be
satisfactory, in terms of mechanical resistance and water stability, when at least 150-250 kg per
m³ of cement, generally 300 kg per m³ are used.

Others proposed to react the "lateritic" soils with lime Ca(OH)₂, either by using silico-
calcareous reaction in autoclave, for example by extrapolating the process describes in the
French patent n°1,501,753 and his certificate of addition n°2,092,936, or at 97°C, as described
by T. RINGSCHOLT and T.C. HANSEN in the journal "Ceramic Bulletin" Vol.57, n°5 (1978),
page 150: "Lateritic soil as raw material for Building Blocks".

In the quoted French patents, they use a material containing less than 50% by weight of
argillaceous matrix, and they add 30% by weight of lime, i.e. approximately 60% by weight
compared to the argillaceous matrix. In the process at 97°C, for a laterite soil containing
approximately 30% by weight of kaolinitic clay, one adds 17% by weight of lime, that is to say
approximately 60% by weight compared to the argillaceous matrix. The products manufactured
in autoclave are of the silico-aluminates CSH type, whereas heating in a heat chamber at 97°C
would lead to the formation of a tricalcium aluminate hydrated of the C₃AH₆ type. The
compressive strength results varied from 25Mpa for C₃AH₆, to 90 Mpa for CSH.

Finally, others use organic binders like asphalt ranging between 10% and 20% by weight of
soil.
5.3 Low Temperature Geopolymeric Setting (LTGS)

In the processes described above, the soil material is coated by a binder (lime, cement, asphalt). When the quantities of binder are low (from 5 to 10% by weight for example), the material obtained is a stabilized earth. The mechanical characteristics are weak, but the earth material keeps its bioclimatic properties. On the contrary, when the quantity of binder increases in order to provide good mechanical properties, the bioclimatic characteristic of the material disappears.

The low temperature geopolymeric setting (LTGS) ensures cohesion to the soil material thanks to a completely different principle. There is no addition of binder but catalysts enabling mineralogical components to react between them, to reticulate, to set. It is the argillaceous material itself that manufactures, in situ, the binder for agglomeration. It acts like a process comparable to what takes place during ceramic firing at 900°C-1100°C, the difference with LTGS being that the setting can already start at room temperature.

The LTGS geopolymeric cross-linking takes place with the help of a geopolymeric precursor:

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{(OH-Si-O-Al-OH)} & \quad (\text{Na}^+, \text{K}^+, \text{Ca}^{++}) \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

The geopolymeric precursor takes place with the help of a geopolymeric precursor:

\[
\begin{align*}
\text{OH} & \quad \text{OH} \\
\text{(OH-Si-O-Al-OH)} & \quad (\text{Na}^+, \text{K}^+, \text{Ca}^{++}) \\
\text{OH} & \quad \text{OH}
\end{align*}
\]

Kaolinite present in clays is transformed by this oligosialate into a three-dimensional, water stable compound, having a strong mechanical resistance. The oligosialate geopolymeric precursor contains 50% by weight of NaOH, KOH equivalent.

According to the quantity of oligosialate added to the argillaceous material, the geopolymeric cross-linking is more or less complete. For a lateritic earth, we can say that:

a) from 0.5% to 2% by weight, the earth is stabilized with a good behaviour against water.

b) from 2% to 5%, blocks are water stable, with a compressive strength ranging between 4Mpa and 6Mpa.

c) from 5% to 10%, blocks are comparable to fired brick, with resistances ranging between 8Mpa and 60Mpa.

These mechanical characteristics depend on the setting temperature. Each setting temperature yields a very particular finished product.

5.3.1 Geopolymeric setting at room temperature: temperature at most equal to 65°C.

It is used to manufacture blocks or bricks, water stable, of medium mechanical resistance.

The oligosialate reagent is added as a powder, generally accompanied by a mineral additive making it possible to correct the argillaceous nature of the soil, and the mix "soil + reagent" is
crushed in a hammer mill for example. This mixture can be stored for a long period if necessary. Then, it is hydrated in a mixer in order to obtain a semi-plastic paste, the quantity of added water depending exclusively on the nature of each soil. This semi-plastic mixture will mature during at least 24 hours (Fig.5.1).

Figure 5.1: Manufacture of LTGS geopolymeric cross-linking bricks

5.3.1.1 *Room temperature*
We measure the progression of compressive strength with time. In this case, we used 6% of oligosialate reagent of the GEOPOLY ® KNA type (3% NaOH, KOH equivalent), the values obtained are as follows:

- at the end of 3 days 4,1 Mpa
- at the end of 15 days 7,9 Mpa
- at the end of 45 days 7,7 Mpa

5.3.1.2 *Temperature equals to 60°-65°C*
A brick put in a heated chamber at 60°C, during 3 to 5 hours gives a compressive strength equal
to 7.0 Mpa.

5.3.2 Geopolymeric setting at temperature ranging between 80°C and 450°C:
The materials obtained are equivalent to ceramic bricks. Table 5.1 (Fig.5.2) shows the relation between the GEOPOLY ® KNA reagent in percent and the compressive strength.

Table 5.1: Compressive strength according to the quantity of GEOPOLY KNA ® reagent, its NaOH, KOH equivalent and the temperature of geopolymeric cross-linking LTGS.

<table>
<thead>
<tr>
<th>% reagent geopolymer</th>
<th>% equivalent NaOH, KOH</th>
<th>Temperature of Geopolymerisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>85°C</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6 Mpa</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>12 Mpa</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>15 Mpa</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>17 Mpa</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>18 Mpa</td>
</tr>
</tbody>
</table>

The compressive strength, after 4 days of immersion in water, looses approximately 30%, compared to dry value. Thus a 12.6 Mpa dried brick manufactured at 85°C gets after 4 days immersion in water, 8.0 Mpa (P.V. n°134 from CEMEREX, 1982) (Fig.5.3).

The compressive strength for a brick treated at 400°C is 36 Mpa, gets 28 Mpa after 4 days of immersion in water.

Figure 5.2: Compressive strength for various quantities of GEOPOLY KNA ® reagent and the temperature of LTGS geopolymeric cross-linking.
Figure 5.3: Compressive strength for various quantities of GEOPOLY KNA ® reagent, at 85°C and 450°C, after 24 hours of immersion in water, then dried out.

5.4 Quality of comfort:

All materials manufactured with LTGS geopolymeric cross-linking preserve the quality of comfort specific to earth materials. This quality remains and is neither disturbed by the medium temperature treatments (85-450°C), nor by the quantities of added GEOPOLY ® reagent.

This quality of "interior comfort", like the one obtained from pisé or rammed earth, is due to the "air-conditioning" property provided by the physical and chemical characteristics of geopolymers obtained with LTGS. These geopolymers, which constitute the matrix of the brick, have properties known as zeolithic, i.e. the property "to breathe", to be in constant hygrometrical balance with the interior of a house and constitute therefore an excellent insulation material against heat.

Indeed, contrary to the generally propagated idea, the heat insulation of buildings against warm climate does not follow the same rules and laws as the heat insulation against cold climate. It is known that, in hot and dry areas, the traditional earth material is providing a comfort much higher than modern insulating material used in northern industrialized countries. Bricks manufactured by LTGS geopolymeric cross-linking absorb water vapour. At night, they store condensation moisture from the surrounding air. During the day, they release this moisture, either inside, if the relative humidity should be compensated for, or outside. There is evaporation, therefore a drop in the temperature of the material, therefore a cooling of the house, and insulation against heat.
5.5 Building materials made with the concept of geopolymerisation:

The LTGS geopolymeric cross-linking is an innovative use of soil materials. In each country, by changing only certain parameters, all materials needed in building can be manufactured namely:

- pisé, rammed earth water resistant
- adobe, water resistant
- bricks
- beams
- foundations
- coatings
- coating of wall
- floor covering, pavement
- roof

The studies, currently in development, have already shown that it is also easy to conceive the manufacture of some type of mortars and hydraulic binders within the frame of this technology.

The LTGS geopolymeric cross-linking applied to the earth industry was the subject of a French ANVAR contract of assistance to the innovation, between Company CORDI-GEOPOLYMERE SA, 02100 SAINT-QUENTIN, France and the Company GARDIOL, 04200 SISTERON.

GEOPOLY ® is a trademark of Cordi-Géopolymère SA.